分数与除法教案(15篇)
在教学工作者开展教学活动前,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?下面是小编精心整理的分数与除法教案,欢迎大家分享。
分数与除法教案1教学目标
1.使学生理解两个整数相除的商可以用分数来表示.
2.明确分数与除法的关系,加深学生对分数意义的理解.
教学重点
理解、归纳分数与除法的关系.
教学难点
用除法的意义理解分数的意义.
教学步骤
一、铺垫孕伏.
1.读题说得数.
3。2+1。68 0。8×0。5 14-7。4 0。3÷1。5 4。8×0。02
7。8+0。9 1。53-0。7 0。35÷15 0。4×0。8 0。8-0。37
2.口述 表示的意义.
3.列式计算.
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知.
1.新课导入.
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书: 1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)
2.教学例2.
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)
(2)学生完整叙述自己想的过程.
(3)反馈练习.
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3.教学例3.
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式: 3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流.
甲生:先把每个圆剪成4个 块,然后把12个 平均分成4份,再把3个 拼在一起,每份是 块.
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块.(在3÷4后板书 块)
(4)看图根据乙生分饼的过程说出 表示的意义.
①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是 .
(5)都是 ,意义有何不同?(结合算式说出 的两种意义)
明确: 表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份.
(6)反馈练习:说说下面分数的两种意义
4.归纳分数与除法的关系.
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.
(板书: )
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习.
三、全课小结.
通过今天的学习,你明白了什么?
四、随堂练习.
1.填空.
分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).
2.用分数表示下列各式的商.
4÷5 11÷13 27÷35
9÷9 13÷16 33÷29
3.列式计算.
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业.
用分数表示下面各式的商.
3÷4 7÷12 16÷49 25÷24 9÷9
分数与除法教案2学习目标:
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2 .掌握一个数除以分数的计算方法,并能正确进行计算。
学习重点:理解一个数除以分数的意义和基本算理。
学习难点:运用分数除法的计算方法解决实际问题。
学习内容:
一、分一分
有4张同样的圆形纸片。
(1)每2张一份,可以分成多少份?
画一画:
列示:
(2)每1张一份,可以分成多少份?
画一画:
列示:
(3)每1/2张一份,可以分成多少份?
画一画:
列示:
(4)每1/3张一份,可以分成多少份?
画一画:
列示:
(5)每1/4张一份,可以分成多少份?
画一画:
列示:
二、画一画
1.有1根2米长的绳子。
(1)截成每段长1/3米,可以截成几段?
画一画:
列示:
(2)截成每段长2/3米,可以截成几段?
画一画:
列示:
2.3/4里面有几个1/8?
画一画:
列示:
三、填一填,想一想
在〇里填上“>”“
4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4
2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8
你发现了什么?( )
四、试一试
8÷6/7 5/12÷3
你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?
( )
分数与除法教案3教学目标:
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数式另一个数的几分之几。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习 ……此处隐藏12621个字……型的分数乘除法应用题跃然纸上,供同学们解答,为学生的创新思维提供了丰富的习题情境。)
(三)(特辣串串烧)编三步计算的分数乘除法应用题并分析解答。
学生编题如下:
全班共有75人,女生比全班少3/5,男生有多少人?
全班共有75人,男生比全班少2/5,女生有多少人?
女生有30人,女生比男生少1/3,全班有多少人?
女生有30人,男生比女生多1/2,全班有多少人?
男生有45人,女生比男生少1/3,全班有多少人?
男生有45人,男生比女生多1/2,全班有多少人?
女生有30人,女生比全班少3/5,男生有多少人?
男生有45人,男生比全班少2/5,女生有多少人?
……
(设计意图:再一次吊起学生的胃口,通过同学们制作“特辣串串烧”把课堂推向高潮,真正激活学生的思维,这样学生的参与面广,覆盖较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。)
归纳:不管是哪种口味的“串串烧”,制作、分析、解答的妙招和法宝都是先找单位“1”,然后看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或用方程解答。
四、全课总结
1、同学们今天我们以什么样的方法复习了分数应用题?这节课你有什么收获?同时出示课题:复习分数乘除法应用题。
2、一步、两步、三步计算的分数乘除法有共同的解题策略吗?
3、你对今天这节课自己的表现还满意吗?自我评价一下
4、还有什么问题或困惑吗?
(设计意图:培养学生学习新知识后要及时地总结学习方法和解题策略的意识,让学生会对自己的表现进行自我评价,而且培养学生提问题的能力和意识。克服教师作学生代言人,让学生真正成为课堂的主人。)
板书设计:
复习分数乘除法应用题
解题策略
1、找准单位“1”
2、单位“1”是已知的,用乘法计算
3、单位“1”是未知的,用除法计算
【反思】
课始给听课的老师们介绍本班人数引入复习内容,然后又引导学生用分数给三种数量中的任意两个量建立关系做进一步介绍,学生兴趣盎然,都想极力表现自己,使自己的介绍更为精彩和清楚。在同学们你一言我一句的介绍中,一长串的有关数量之间的分数关系跃然纸上,成为了本节课的珍贵的教学资源。也为学生的创新思维提供了丰富的习题情境。
然后教师把这一长串的分数关系比作“串串烧”,把同学们的最爱“串串烧”引入课堂,一下子吊起了学生的胃口,同学们还想吃“串串烧”吗?同学们正馋的流口水,异口同声说“想吃”。这时教师不失时机请同学们以这两组数据为原料,自己亲自动手制作“微辣串串烧”,“中辣串串烧”,“特辣串串烧”。抛出了三个思维空间广阔的、层层推进的问题,将学生已有的知识储备激活,对自己所学的分散、零乱、细碎的知识点,结成知识链,形成知识网,对认知结构实行精加工,自然而然地实现编题和解题策略的最优化。提高学生的发散思维能力和创新能力。让学生自主探索,学生始终处于兴奋状态,大家一次次跃跃欲试,学习积极性异常高涨。学生根据分数应用题的特点和题目中的数量关系,灵活选择条件和问题,各种口味的“串串烧”被同学们制作出来了,并顺利分析解答完毕。
每次编题、分析解答之后,都让学生及时总结制作、分析、解答这类题的绝招、法宝是什么?第一步:找单位“1”,第二步:看单位“1”是已知的,用乘法计算,单位“1”是未知的用除法计算或用方程解答。
这样的复习方法,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大,练习设计层层推进有梯度,让学生经历三次制作“串串烧”的过程,一次次吊起学生的胃口,在交流碰撞中高潮迭起,学生的思维真正被激活了,一直处于兴奋和积极状态下,课堂异常活跃,学生的参与面广,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。这节课的“串串烧”学生不但吃香了,而且印象深刻,不易忘记。这样一节课下来,真是“你有我有全都有。”人人都有收获,优等生得到了施展,中等生得到了锻炼,后进生得到了提高。实现了互相学习、取长补短、共同提高的目的。
分数与除法教案15教学目标:
使学生理解分数除法的意义,理解并掌握分数除以整数的计算法则,能正确地进行计算,并在教学中渗透转化的教学思考方法,培养学生的归纳概括能力。
重点难点:
分数除以整数的计算法则
教学准备:
实物投影仪
教学过程:
一、复习。
1.根据算式32×25=800写出两道除法算式。
2.说出下面各数的倒数。
0.25 、3、 5、 1、
3.填空。
(1)30÷5表示把30平均分成( )份,
求其中( )份是多少。
(2)求18的 是多少,可以用算式18×( ),
也可以用算式18÷( ),所以18÷3=18×( )。
二、新授。
1、师先从学生的生活经验入手,问:同学们都参过哪些兴趣小组呢?
大屏幕出示信息窗的情景图,问:大家可以提出哪些除法问题呢?
板书:给小猴子做一件背心需要多少米花布呢?
怎样列算式呢?
师:小组讨论一下,怎样计算呢?
哪位同学上来交流一下你组的计算过程呢?
教师归纳总结:
(1) 可以根据题意画出线段图。
(2) 利用平均分的思想,把 米平均分成3段,实际上就是把9个 米平均分成3份,每份是3个 米,
(3)根据分数乘法的意义,把 米平均分成3份,求每份是多少,也就是求 的 是多少。
1、师小结:分数除以整数,如果分数的分子能被整数整除时,可以直接去除。如果分子不能被整数整除的,就乘分子的倒数。
2、教学绿点部分。
现在大家可以自己解决第二个问题了,(大屏幕出示:做一条裤子需要花布多少米?)
学生独立操作解答。
此题让学生明白,在解答分数除以整数的情况下,乘分子的倒数可以适用于任何情况,让学生体会将分数除法转化成分数乘法更具有普遍性。
师:小组讨论交流,观察、比较、分析“ ”和“ ”在计算方法上的异同点。
最后归纳出分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
问:上述结语中为什么要添上“0除外”?
三、巩固练习。
1.课本第61页的第1、2题。
2.下面的计算有错吗?错的请改正。
3.填空。
四、作业。
1.自主练习第4、8、9题。
2.判断对错
文档为doc格式