小学数学教案

时间:2025-01-12 08:00:13
有关小学数学教案范文集合八篇

有关小学数学教案范文集合八篇

作为一名老师,时常需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。来参考自己需要的教案吧!下面是小编收集整理的小学数学教案8篇,希望能够帮助到大家。

小学数学教案 篇1

教学内容:

北师大版三年级上册数学教科书第10至第11页。

教学目标:

1.探索并掌握一位数除两位数的口算方法,能正确计算,体会算法的多样化。

2.经历从实际情境中提出问题、解决问题的过程,感受数学在实际生活中的应用,培养数学思维能力。

3.经历与他人交流算法的过程,培养学习兴趣,学会合作学习。

教学重点:

探索并掌握一位数除两位数的口算方法,并能正确地进行计算,提倡算法的多样化。

教学难点:

结合具体情境,用除法知识解决简单的实际问题,感受数学在实际生活中的运用。

教学用具:

课件、幻灯、小黑板。

教学设计:

一、复习

1、口算表内除法

6÷3,12÷4,18÷6,35÷7

2、口算整十、整百、整千数除以一位数

30÷3,600÷2,560÷7,360÷9

说说你们是怎样想的?

3、师出题:84÷4

观察这道算式,比较与第1、第2题算式有什么不同?

4、根据这道算式你能编一道应用题吗?

二、师生互动、合作探究

1、学生汇报所编应用题,尝试计算解答。

2、探索计算方法,让学生在独立思考的基础上,组织学生同桌互相交流计算方法。鼓励学生算法的多样化。

3、全班汇报,交流思考方法。通过交流、讨论、反思解决问题的过程,启发学生总结归纳两位数除以一位数的口算方法。

4、优化算法。你认为哪种方法?为什么?

师小结:同学们,这几种方法都是你们自己的想法,各有各的'理由,你喜欢哪种就用哪种。

5、运用知识,解决例题。

(1)让生根据课件创设情境。

生:阳春三月,鸟语花香,一年一次的植树节到了,老师带领同学们在山坡下植树,他们又说又笑,干劲可大啦。

(2)在画面中加入条件“有36人,每组3人”。你能提出问题吗?

让生独立思考,提出解决的问题“可以分成多少组?”。

(3)你想用自己喜欢的方法解答吗?

(4)让生独立思考后,列式解答;师巡视,了解学生情况。

(5)全班交流,指名说是怎样算的,允许学生多种方法并存。

三、灵活运用、拓展延伸

1、 46÷2 84÷4 630÷9 96÷3

66÷3 100÷5 720÷8 48÷2

2、7元 84元

⑴、一双鞋子的价钱是一副手套的几倍?

⑵、一双鞋子的价钱比一副手套贵多少倍?

⑶、你还能提出哪些数学问题?

结合具体的情境,引导学生理解“几倍”,培养学生提出问题和解决问题的本领,感受数学与生活的密切联系。

四、全课小结、自我评价。

这节课,你有什么收获?请把你的收获与大家共同分享。

小学数学教案 篇2

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-85.6+0.9-+0-82

2、如果+20%表示增加20%,那么-6%表示。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的'最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。2、练习一第6题。

3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0或(0g)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。(2)负数比0小,正数比0大,负数比正数小。

小学数学教案 篇3

教学目标

1.使学生通过看一看、摸一摸、画一画、围一围等操作实践活动,直观认识长方形、正方形和圆,初步感受到图形间的异同。

2.使学生在丰富多彩的学习活动中积累对数学的兴趣,增强与同学交往、合作的意识。

3.让学生在经历探究图形特征的过程中,初步体验探究事物特征的方法。

教学过程

一、 游戏中梳理回顾

1.小朋友,你们喜欢搭积木吗?今天我们就来玩这个游戏。先请每组的小 ……此处隐藏8245个字……4;(3)先算个位再算十位。

师:在竖式计算时,我们一般从个位算起,谁来把计算的过程跟大家讲讲?

生1:先算个位上3+1=4,4写在个位上,再算十位上4+3=7,7写在十位上。

师:刚才这位同学的方法就是竖式计算的方法,大家掌握了吗?

同上面这个教学片段一样,很多教师在揭示算法时不自觉地将算法同算理剥离开来,诚然,站在成人的角度,笔算加法就是这么简单:个位同个位相加,十位同十位相加,几乎没有任何需要解释的理由。但殊不知这样教学,学生尽管能较快地掌握加法笔算的方法,但是这种机械、形式化地操作,让学生在计算时不自觉地脱离算理的.有效支撑,学生的计算仍然只是稀里糊涂地计算,甚至当学生学习乘法笔算时,尽管能娴熟地迁移加法笔算的方法,但同时导致了乘法笔算也只是停留在机械化操作的层面。因此,笔者认为,加法笔算教学,增加原始竖式的教学十分有必要。在教学一年级(下册)加法笔算时,学生交流完43+31的口算算理之后,我让学生尝试进行竖式计算。交流时,有不少学生是直接将答案74抄写在横线下面的,也有不少学生知道从个位算起,再算十位,列出了标准的竖式。这个时候我就将原始竖式呈现出来:

让学生思考:根据刚才口算的三个步骤,竖式计算过程中也应有这样的三个步骤,而你们在计算40+30=70时,怎么就直接把7写在十位上面去了呢?学生一开始愣住了,如实告诉我:家里爸爸妈妈就是这么教的,书上也是这么写的。我就继续让学生思考:爸爸妈妈教的竖式以及书上的竖式这样算有没有道理呢?我随即同学生做了几个实验:我让学生用爸爸妈妈教的方法做几道题,我用原始竖式计算,放到黑板上一比较,学生发现,计算结果都一样,而原始竖式看起来计算的步骤更清楚,但是写起来较麻烦。并且学生指出,原始竖式中一位数加上整十数,得数的个位上还是原来的一位数,十位上的数跟整十数十位上的数相同,所以就能省略计算的步骤,把竖式写的简单些。经历了对原始竖式的观察、比较、优化,我相信学生对笔算两位数加两位数的算法就不再是操作性理解了。

非常巧合的是,最近笔者在翻看以前的杂志时发现,上海小学数学教材编写组在20xx年第6期《小学青年教师》发表的《关于整数加减法竖式计算的处理思路》一文中也指出:根据新的学力观,我们不应该仅仅重视竖式一般的形式,也应该重视使用竖式表现思考过程。而这种表现了思维过程的竖式形式其实就是原始竖式。加法笔算时引进原始竖式,不但有效沟通了直观算理到简化算法的过渡,更让学生对数和数位结合的位值原则有了初步的体验,这为学生以后的乘除法的笔算学习打下了坚实的基础。

思考三:笔算乘法在沟通算理和算法时以什么为突破口?

学生有了将加法的原始竖式过渡到简化竖式的经验后,教学两位数乘一位数时,怎样由原始竖式过渡到简化竖式已经不再是本节课的难点了,因为加法同乘法的简化过程、方法都是相通的,再加上学生在丰富的加法笔算经验的引领下,完全可以自主探究出乘法竖式的简化写法,因此,教学乘法的笔算时,我们不妨重新改编教材,将原始竖式这块内容割舍掉。而割舍这一内容,需要寻找到一种比原始竖式更能有效沟通算理和算法的突破口。

二年级(下册)第四单元中教学三位数连加,练习里有这样一道题(42页):三角形花坛的三条边一样长(每条边长268厘米 ),花坛栏杆的长一共多少厘米?解决这道题时,不少学生列了乘法算式2683,可是乘法竖式不会计算,当时我就引导学生借助加法竖式进行计算,并且在加的过程中让学生思考怎样算能算的更快,学生在计算每一位上三个数相加时自然运用口诀进行简便计算。这道题给了我很大的启发,学生尽管是在用加法竖式进行计算,可是运用乘法口诀帮助计算的方法不就是乘法笔算的方法吗?因此,在学生初步具备数和数位位值知识的基础上,在充分理解算理的前提下,笔算几个相同加数连加的简便算法就是提炼乘法笔算方法的最佳突破口。当然,我们在重组教材时,还需要考虑到,如何促使学生在加法笔算时自觉采取简便算法,以促使这一算法有效迁移到乘法的笔算中。

在使用现行教材例题进行教学两位数乘一位数,交流142的算理时,学生能很快说出:14+14=28。但当教师问及还能怎样想时,很少有学生能想到先算102=20.再算42=8,再算20+8=28。细细分析发现:学生在解决142时,往往把14看做一个整体,两个14相加,学生能很快口算出结果。但是教学142的笔算,需要支撑的是第二种算理,因此教学时,老师往往根据教材的编排想方设法引导学生再用局部分解的眼光来思考问题,(把14分成10和4,142就是把2个10和2个4合起来),这显然不太符合学生的思维常态,因此课堂进行到这一环节时常常会冷场。同时,由于计算2个14比较简单,在尝试乘法笔算时不排除会有部分学生的计算仅仅停留在加法计算的层面上,而没有内化到乘法上。这就导致这部分学生在后面的练习中出现计算步骤混乱、计算方法混淆等情况。

于是,我们尝试调整例题中的数量,促使学生在口算时用先分解再综合的策略解决问题。如可以改成每只小猴采32只桃,3只小猴一共采多少个桃?这样,学生在口算3个32相加时难度相对大些,学生必然会采用分解的策略:先算303=90,23=6,再采用综合的策略:90+6=96。在明确算理后,让学生用连加的笔算验证刚才的口算过程,并且让学生思考怎样算能算的更快。在运用口诀进行加法竖式的简便计算后,让学生带着问题思考:如果让你自己尝试用乘法竖式计算323,你会从这个连加竖式中得到哪些启发呢?学生边思考边进行乘法竖式的探究。在此基础上,沟通加法笔算与乘法笔算的相通之处,进一步明确算理、巩固算法。在交流乘法笔算的计算过程时,教师让学生说说每一步计算的算理,并引导学生及时同加法竖式联系起来,使学生明确,乘法中的每个计算步骤都能在加法竖式中找到,并且用到的口诀也是一致的。

3.改编重组教材的可行性再思考:结合几个相同加数连加的笔算,学生在探究笔算两位数乘一位数(不进位)时,对算理的理解更深入,对算法的掌握更清晰。这一突破口对后继学习的两位数乘一位数(进位)产生的优势更明显。现行进位乘的教材从原始竖式过渡到有进位的简化竖式,这个过程有相当大的跳跃性,既有中间计算步骤的简化,又有进位方法的提炼,仅仅从原始竖式中获得启发,让学生自主提炼出简化的进位乘,难度比较大。相比而言,将连加竖式的简便算法迁移到简化的进位乘,更能促进学生自主迁移、运用已有的计算经验,从而有效拓宽探究的空间,增强探究的欲望,发展学生的思维。以243的竖式为例:

师:这两种竖式在计算时有什么联系?

生1:都是先算3个4相加,再算3个20相加,再把它们合起来,因此,计算的结果相同。

生2:计算过程中用到的口诀都相同。

生3:进位的方法也相同:都是个位満十,向十位进1。

上面的教学片段证实:以笔算加法的简便计算作为教学笔算乘法的突破口,更能有效沟通算理与算法,促进学生的知识迁移。这样组织教学,拓展了学生后继学习新知的探究空间,促进了学生对知识结构的疏理、重建,提升了数学思维、能力的发展,让学生明明白白地学会计算。

《有关小学数学教案范文集合八篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式